go to top scroll for more

Projects


Projects: Projects for Investigator
Reference Number EP/J000884/1
Title Ultra-high temperature synthesis of high-performance Zintl thermoelectrics
Status Completed
Energy Categories Energy Efficiency(Other) 50%;
Other Power and Storage Technologies(Electric power conversion) 50%;
Research Types Basic and strategic applied research 100%
Science and Technology Fields PHYSICAL SCIENCES AND MATHEMATICS (Physics) 50%;
PHYSICAL SCIENCES AND MATHEMATICS (Metallurgy and Materials) 50%;
UKERC Cross Cutting Characterisation Not Cross-cutting 100%
Principal Investigator Dr J Bos
No email address given
School of Engineering and Physical Sciences
Heriot-Watt University
Award Type Standard
Funding Source EPSRC
Start Date 13 September 2011
End Date 12 September 2013
Duration 24 months
Total Grant Value £79,630
Industrial Sectors Energy
Region Scotland
Programme NC : Physical Sciences
 
Investigators Principal Investigator Dr J Bos , School of Engineering and Physical Sciences, Heriot-Watt University (100.000%)
Web Site
Objectives
Abstract Technologies that enable the efficient use of energy could have an enormous impact on the most pressing issues of today: global warming and the reliance on ever-dwindling supplies of fossil fuels.The proposed research addresses this topical challenge through the investigation of the next generation of thermoelectric materials that harvest waste heat and transform it into useful electricity. In particular, the research is focused on thermoelectric materials that can operate at high temperatures, which is essential as the Carnot efficiency (the thermodynamic maximum) increases with temperature difference.The scientific challenge is to optimise three competing material parameters; the Seebeck voltage; the electrical and thermal conductivity, and to do this in a material with good temperature stability.The novelty of the proposed research derives from the use of ultra-high temperature synthesis to achieve temperature stability, and the synergistic exploitation of Zintl chemistry and interfaces in nanocomposites to obtain large thermoelectric figures of merit.Zintl phases are key high-performance thermoelectric materials because the simultaneous presence of ionic and covalent regions enables a more independent optimisation of the thermoelectric parameters compared to electronically homogeneous materials. Two classes of promising Zintl-type phases have been identified, and the performance of outstanding bulk materials will be further enhanced through the use of interfaces in nanocomposites. This ambitious and transformative research programme will contribute towards the development of high-performance thermoelectric materials operating at temperatures most suitable to power generation, enabling 20-30% energy conversion efficiencies. The research will also lead to an increased understanding of the relation between composition, structure and thermoelectric properties
Publications (none)
Final Report (none)
Added to Database 06/12/11